Monotonicity in several non-commuting variables

نویسنده

  • James Pascoe
چکیده

Let f : (a, b)R. The function f is said to be matrix monotone if A ≤ B implies f(A) ≤ f(B) for all pairs of likesized self-adjoint matrices with spectrum in (a, b). Classically, Charles Loewner showed that a bounded Borel function is matrix monotone if and only if it is analytic and extends to be a self-map of the upper half plane. The theory of matrix montonicity has profound consequences for any general theory of matrix inequalities. For example, it might seem surprising that X ≤ Y does not imply that X ≤ Y , which is a consequence of Loewner’s theorem. We will discuss commutative and noncommutative generalizations to several variables of Loewner’s theorem

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . FA ] 1 9 D ec 2 00 3 RELATIONS ON NONCOMMUTATIVE VARIABLES AND ASSOCIATED ORTHOGONAL POLYNOMIALS

This semi-expository paper surveys results concerning three classes of orthogonal polynomials: in one non-hermitian variable, in several isometric non-commuting variables, and in several hermitian non-commuting variables. The emphasis is on some dilation theoretic techniques that are also described in some details.

متن کامل

Maximal subsets of pairwise non-commuting elements of some finite p-groups

Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

Relative n-th non-commuting graphs of finite groups

‎Suppose $n$ is a fixed positive integer‎. ‎We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$‎, ‎associated to the non-abelian subgroup $H$ of group $G$‎. ‎The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$‎. ‎Moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...

متن کامل

On Laplacian energy of non-commuting graphs of finite groups

‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016